R for Reproducible Scientific Analysis

Nov 19, 2019

09:00 - 16:30

Instructors: Anne Schad Bergsaker, Tobias Busch

Helpers: Mohamed Abdelhailm, Athanasia Mowinckel, Viviane Girardin

General Information

Software Carpentry aims to help researchers get their work done in less time and with less pain by teaching them basic research computing skills. This hands-on workshop will cover basic concepts and tools, including program design, version control, data management, and task automation. Participants will be encouraged to help one another and to apply what they have learned to their own research problems.

For more information on what we teach and why, please see our paper "Best Practices for Scientific Computing".

Who: The course is aimed at graduate students and other researchers. You don't need to have any previous knowledge of the tools that will be presented at the workshop.

Where: University of Oslo, room 3508, Kristine Bonnevies Hus, Blindernveien 31, 0371 Oslo. Get directions with OpenStreetMap or Google Maps.

When: Nov 19, 2019. Add to your Google Calendar.

Requirements: Participants must bring a laptop with a Mac, Linux, or Windows operating system (not a tablet, Chromebook, etc.) that they have administrative privileges on. They should have a few specific software packages installed (listed below). They are also required to abide by Software Carpentry's Code of Conduct.

Accessibility: We are committed to making this workshop accessible to everybody. The workshop organizers have checked that:

Materials will be provided in advance of the workshop and large-print handouts are available if needed by notifying the organizers in advance. If we can help making learning easier for you (e.g. sign-language interpreters, lactation facilities) please get in touch (using contact details below) and we will attempt to provide them.

Contact: Please email contact-us@swcarpentry.uio.no for more information.


Schedule

Day 1

09:00 Introduction to R and RStudio
10:30 Coffee
10:45 Data Structures and Data Frames
12:00 Lunch break
13:00 Building programs with R
14:30 Coffee
15:45 Wrap-up
16:00 END

We will use this collaborative document for chatting, taking notes, and sharing URLs and bits of code.


Syllabus

Programming in R

  • Working with vectors and data frames
  • Reading and plotting data
  • Creating and using functions
  • Loops and conditionals
  • Using R from the command line
  • Reference...

Setup

To participate in a Software Carpentry workshop, you will need access to the software described below. In addition, you will need an up-to-date web browser.

We maintain a list of common issues that occur during installation as a reference for instructors that may be useful on the Configuration Problems and Solutions wiki page.

R

R is a programming language that is especially powerful for data exploration, visualization, and statistical analysis. To interact with R, we use RStudio.

Windows

Video Tutorial

Install R by downloading and running this .exe file from CRAN. Also, please install the RStudio IDE. Note that if you have separate user and admin accounts, you should run the installers as administrator (right-click on .exe file and select "Run as administrator" instead of double-clicking). Otherwise problems may occur later, for example when installing R packages.

macOS

Video Tutorial

Install R by downloading and running this .pkg file from CRAN. Also, please install the RStudio IDE.

Linux

You can download the binary files for your distribution from CRAN. Or you can use your package manager (e.g. for Debian/Ubuntu run sudo apt-get install r-base and for Fedora run sudo dnf install R). Also, please install the RStudio IDE.